
This paper is included in the Proceedings of the
21st USENIX Conference on File and

Storage Technologies.
February 21–23, 2023 • Santa Clara, CA, USA

978-1-939133-32-8

Open access to the Proceedings
of the 21st USENIX Conference on

File and Storage Technologies
is sponsored by

ROLEX: A Scalable RDMA-oriented
Learned Key-Value Store for

Disaggregated Memory Systems
Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng,

Huazhong University of Science and Technology
https://www.usenix.org/conference/fast23/presentation/li-pengfei

https://www.usenix.org/conference/fast23/presentation/li-pengfei

ROLEX: A Scalable RDMA-oriented Learned Key-Value Store
for Disaggregated Memory Systems

Pengfei Li, Yu Hua*, Pengfei Zuo, Zhangyu Chen, Jiajie Sheng
Wuhan National Laboratory for Optoelectronics, School of Computer

Huazhong University of Science and Technology
*Corresponding Author: Yu Hua (csyhua@hust.edu.cn)

Abstract
Disaggregated memory systems separate monolithic servers

into different components, including compute and memory

nodes, to enjoy the benefits of high resource utilization, flexi-

ble hardware scalability, and efficient data sharing. By exploit-

ing the high-performance RDMA (Remote Direct Memory

Access), the compute nodes directly access the remote mem-

ory pool without involving remote CPUs. Hence, the ordered

key-value (KV) stores (e.g., B-trees and learned indexes) keep

all data sorted to provide rang query service via the high-

performance network. However, existing ordered KVs fail to

work well on the disaggregated memory systems, due to either

consuming multiple network roundtrips to search the remote

data or heavily relying on the memory nodes equipped with in-

sufficient computing resources to process data modifications.

In this paper, we propose a scalable RDMA-oriented KV store

with learned indexes, called ROLEX, to coalesce the ordered

KV store in the disaggregated systems for efficient data stor-

age and retrieval. ROLEX leverages a retraining-decoupled

learned index scheme to dissociate the model retraining from

data modification operations via adding a bias and some data-

movement constraints to learned models. Based on the opera-

tion decoupling, data modifications are directly executed in

compute nodes via one-sided RDMA verbs with high scala-

bility. The model retraining is hence removed from the crit-

ical path of data modification and asynchronously executed

in memory nodes by using dedicated computing resources.

Our experimental results on YCSB and real-world workloads

demonstrate that ROLEX achieves competitive performance

on the static workloads, as well as significantly improving

the performance on dynamic workloads by up to 2.2× than

state-of-the-art schemes on the disaggregated memory sys-

tems. We have released the open-source codes for public use

in GitHub.

1 Introduction

Recent disaggregated memory systems separate memory, stor-

age, and computing resources into independent pools [16, 34,

42] for high resource utilization, flexible hardware scalability,

and efficient data sharing, which become prevalent in many

datacenters and clouds [2, 3, 8]. The disaggregated system

adopts the RDMA-capable networks for communications due

to the salient features, such as high throughput (40-400 Gbps),

low latency (a few microseconds), and remote CPU/kernel

bypassing [12, 41, 51], which are widely supported by Infini-

Band, RoCE, and OmniPath [16, 29, 36, 41, 49].

The disaggregated memory systems become important in-

frastructures [1, 17, 32, 34, 39, 40, 42] for various applications,

including databases [27, 40] and in-memory key-value (KV)

stores [12, 39, 44, 53]. Among them, tree-based and learned

indexes are two widely used structures for the ordered key-

value stores, which provide efficient range query performance

via identifying items in a given range [7, 24]. In the disaggre-

gated memory systems, the machines in compute and memory

pools are respectively termed as compute and memory nodes,

which are specialized for computing and storage purposes.

Deploying tree-based structures in the disaggregated mem-

ory system becomes inefficient, since the inner nodes con-

sume much memory space and fail to be fully cached, thus

resulting in multiple network roundtrips for traversing the en-

tire tree. Various index caching schemes [31, 43, 52] propose

to alleviate the network penalty via locally caching partial

data, which however still suffer from unavoidable capacity

misses due to the rapid growth of data.

Unlike them, XStore [44] proposes to cache the learned

indexes for remote data accessing, since the learned models

consume less memory footprints than tree-based structures

by up to several orders of magnitude [14,24]. By locally hold-

ing the whole learned index structure, a one-sided RDMA

READ is sufficient for compute nodes to fetch remote data

in the context of static (i.e., read-only) workloads. However,

the design goal of XStore is not to exploit the strengths of

disaggregated memory systems. Instead, XStore relies on the

monolithic servers to process dynamic (i.e., read-write and

write-intensive) workloads. Inspired by XStore, we adopt the

similar idea and construct XStore-D on the diaggregated mem-

ory systems, rather than conventional monolithic context, by

USENIX Association 21st USENIX Conference on File and Storage Technologies 99

transferring data modification requests to memory nodes via

RPCs. We observe that in fact XStore-D becomes inefficient

to handle intensive modification requests, since the computing

resources in the memory nodes are insufficient to meet the

intensive computation requirements [39, 53]. As a result, new

models fail to be retrained in time and the stale models expand

to a large prediction range to search dynamic workloads. The

compute nodes have to consume more network roundtrips on

determining the exact positions, since the positions dynami-

cally change for data modifications. To avoid the penalty of

large expansion, XStore-D transfers the subsequent requests

to memory nodes until new models are retrained, which fur-

ther increases the computing burden upon memory nodes. It is

non-trivial to coalesce ordered KV stores in the disaggregated

memory systems due to the following challenges.

1) Limited computing resources on memory nodes. Ex-

isting ordered KV stores rely on the monolithic servers to

process write-intensive modifications [23, 44]. However, the

memory nodes in the disaggregated systems contain limited

computation capability and fail to meet the requirements of

computing-intensive operations, e.g., modifying the large B-

tree and frequently retraining models. The CPU access bot-

tleneck on the memory nodes decreases the overall system

performance. Moreover, simply adding more CPUs to the

memory pool for data processing decreases the scalability of

the disaggregated memory systems, since the memory and

computing resources fail to be independently scaled out [52].

2) Overloaded bandwidth for data transferring. Offload-

ing data modifications to the compute nodes meets the com-

puting requirements, which however rapidly fills up the entire

bandwidth due to transferring massive data. Specifically, the

compute nodes consume a large amount of network bandwidth

to balance tree-based structures [7,30], e.g., multi-level nodes

splitting and merging, as well as fetching a large amount of

data to retrain models for the learned indexes [10, 14, 37].

The network bandwidth becomes insufficient to enable high

performance for various data requests.

3) Inconsistency issue among different nodes. Guaran-

teeing data consistency among different nodes during mod-

ification is essential to prevent data loss. However, the in-

consistent states occur when different compute nodes fail to

atomically complete the data and model modification oper-

ations, e.g., multiple compute nodes compete for the same

space to insert data and the local cache becomes stale when

the models are updated. The main reason is that the atomic

granularity of an RDMA operation is 8B, which is much

smaller than the size of each index operation. The compute

nodes require multiple network roundtrips to guarantee data

consistency, incurring high overheads for consistency.

To address the aforementioned challenges, we propose a

scalable RDMA-oriented key-value store using learned in-

dexes, called ROLEX, for the disaggregated memory systems,

which processes data requests on the compute nodes via one-

side RDMA operations. The context of “scalable” means that

ROLEX efficiently supports dynamic workloads and scales

out to multiple disaggregated nodes. Although ROLEX adopts

the similar idea with XStore on the static (i.e., read-only) oper-

ations, ROLEX is completely different with XStore in terms

of the application scope, dynamic (i.e., data modification)

operations, and the index structure on memory nodes. Specif-

ically, ROLEX aims to efficiently support both static and

dynamic workloads in the disaggregated memory systems.

Unlike XStore, ROLEX does not maintain a B-tree on mem-

ory nodes to process modifications. Instead, ROLEX directly

stores the sorted data in the assigned leaves (i.e., data arrays)

on memory nodes. By judiciously decoupling the index op-

erations and moving the retraining phase out of the critical

path, the compute nodes efficiently modify the remote data

via one-sided RDMA operations. When there are insufficient

slots, ROLEX leverages a leaf-atomic shift scheme to atomi-

cally allocate a new leaf for accommodating more data. By

using the retraining-decoupled index structure, ROLEX asyn-

chronously retrains model in the memory pool when there are

sufficient computing resources. The compute nodes identify

new models through a shadow redirection scheme and syn-

chronize the retrained models from remote nodes during the

next reading. It is worth noting that the memory node gen-

erally includes dedicated computing resources provided by

FPGA or ARM cores to offload low-computing requirement

operations [17] (e.g., infrequent retraining in ROLEX), rather

than all index operations.

We implement a prototype of ROLEX1 and evaluate the

performance via widely-used YCSB [47], two real-world,

and two synthetic workloads. Our experimental results show

that ROLEX achieves competitive performance with XStore-

D [44] on static workloads, and outperforms state-of-the-art

RDMA-based ordered KV stores by up to 2.2× on dynamic

workloads. In summary, we have the following contributions:

• Scalable ordered KV store for disaggregated memory
systems. We propose ROLEX to directly process data requests

on the compute nodes via one-sided RDMA operations, which

efficiently explores and exploits the hardware benefits of the

disaggregated memory systems, as well as avoiding the com-

puting resources bottleneck in the memory pool.

• Retraining-decoupled learned indexes for one-sided
RDMA execution. We decouple the insertion and retraining

operations for the learned indexes, and enable compute nodes

to directly insert data without waiting for the model retraining.

Non-retrained models are able to index newly inserted data

using the proposed data-movement constraints.

• Atomic remote space allocation. When there are in-

sufficient slots, the compute nodes leverage a leaf-atomic

shift scheme to atomically allocate data arrays in the memory

pool for accommodating new data. In ROLEX, no collisions

occur among different machines due to the atomic metadata

management.

1The source code is available at https://github.com/iotlpf/ROLEX.

100 21st USENIX Conference on File and Storage Technologies USENIX Association

(a) Read on static workloads. (b) Write different numbers of data. (c) The throughput of various read/write ratios.

Figure 1: The system performance for different schemes. (a) Read and (b) write throughputs with different numbers of data,
using 1 CPU core on memory nodes. (c) Normalized throughput with respect to EMT-D for hybrid read/write workloads.

2 Background and Motivation

2.1 Disaggregated Memory Systems
The disaggregated memory systems breaks monolithic servers

into independent network-attached components, which meets

various application requirements via independently scaling

out the hardware resources. Different nodes communicate

with each other via Remote Direct Memory Access (RDMA)

NICs, such as InfiniBand, RoCE, and OmniPath. The sig-

nificant feature over the traditional network is that RDMA

enables the compute nodes to directly access the memory

nodes without involving remote CPUs via one-sided verbs,

including RDMA READ, WRITE, and ATOMIC operations (e.g.,

compare-and-swap (CAS) and fetch-and-add (FAA)). It is worth

noting that the granularity of the ATOMIC operation is 8B, and

multiple READ and WRITE operations are completed via the

doorbell batching [44] to reduce the network latency. More-

over, even though there are no powerful CPUs in the memory

pool, each memory node generally includes dedicated com-

puting resources provided by FPGA or ARM cores in NICs

that are used for operation offloading [17], which efficiently

supports the operation decoupling in ROLEX.

2.2 Network-Attached Ordered KV Store
This paper mainly focuses on the network-attached ordered

key-value stores, including tree-based and learned indexes,

which keep all data sorted and meet range query requirements.

Tree-based Structures. Tree-based structures [7, 20, 30]

(e.g., B+-tree) store data in the leaf nodes and construct multi-

level inner nodes to search the leaves. However, the tree-based

structures become inefficient to leverage one-sided RDMA

for accessing remote data [44], since the local machine fails

to cache the whole index structure and has to consume mul-

tiple RTTs (i.e., the network roundtrip time) for searching

the inner nodes. Recent designs [31, 43, 52] cache top-level

nodes on compute nodes to access the remote data. Among

them, FG [52] designs a fine-grained B-link tree for the dis-

aggregated systems, which distributes tree nodes across mem-

ory nodes and modifies trees with RDMA-based locks. Sher-

man [43] combines RDMA-friendly hardware and software

features to deliver high write performance on the remote B-

link tree, which optimizes the locking phase by constructing

global locks on the on-chip memory of RDMA NICs. How-

ever, tree-based schemes inevitably incur multiple RTTs for

retrieving inner nodes when the data overflow the limited

local cache.

Learned Indexes. Learned indexes show significant ad-

vantages over tree-based structures in terms of searching

speed and memory consumption, due to the easy-to-use and

small-sized learned models. Specifically, the learned indexes

view the process of searching data as a regression model,

which record the positions of all data by approximating

the cumulative distribution function (CDF) of the sorted

keys [10, 14, 15, 24, 37]. The learned models achieve 2-4

orders of magnitude space savings than the inner nodes of the

tree-based structures [14], which enables the local machine

to cache the whole index structures and avoids the penalty of

multiple RTTs to determine the remote data positions.

XStore proposes a hybrid index structure, i.e., maintain-

ing a B-tree to process modifications and locally caching the

learned indexes for remote data accessing. XStore [44] deliv-

ers high search performance due to only requiring one RTT

to access the static workloads. For the dynamic workloads,

XStore handles the data modification requests by modifying

the B-tree on the memory nodes. At the same time, XStore

expands the stale models to large prediction ranges to en-

sure that the newly inserted data are contained. However,

such design becomes inefficient on the disaggregated memory

systems, since the memory nodes have limited computing

resources and fail to efficiently handle the intensive modifica-

tion requests. The new models fail to be retrained in time and

the stale models cause too low accuracy to search the remote

data in one RTT due to the model expansion. As a result, the

local cache becomes invalid and the subsequent data requests

are transferred to the memory nodes via classic RPCs. The

overall performance significantly decreases due to the limited

computing resources of memory nodes.

2.3 Performance Analysis

We evaluate and analyze the performance of existing network-

attached KV stores in the disaggregated memory system.

Among them, FG [52] and Sherman [43] design RDMA-

USENIX Association 21st USENIX Conference on File and Storage Technologies 101

enabled B-link trees, enabling compute nodes to modify B-

link trees via one-sided RDMA verbs. Moreover, we also

equip the memory nodes with limited computing resources

to analyze why RPC-based KV stores are inefficient for the

disaggregated memory system, i.e., adopting the similar ideas

of EMT-D (i.e., the Masstree [30] based on eRPC [23]) and

XStore-D [44] on the computation-constrained memory nodes

for evaluations.

Learned indexes outperforms tree-based structures on
large-scale static workloads. Figure 1a shows the search

throughput on static workloads. As the datasets constantly

increase, XStore-D shows higher throughput than tree-based

structures, since the compute nodes cache the whole learned

index structure, rather than caching partial inner nodes for

tree-based structures, avoiding multiple RTTs to determine

the data positions. XStore-D obtains remote data within one

RTT according to the prediction results of the learned models,

while other schemes fail.

Index cache becomes invalid on dynamic workloads. Fig-

ures 1b shows the throughput on write-intensive workloads.

We observe that XStore-D delivers lower performance than

Sherman, since XStore-D sends requests to memory nodes

via eRPC and relies on the limited computing resources of

memory nodes to process modifications. The local cache

of XStore-D is not fully exploited and becomes invalid dur-

ing the modification phase, while Sherman delivers higher

throughput via one-sided RDMA. However, the performance

of Sherman decreases when storing a large amount of data,

since the increased inner nodes overflow the local cache.

Disaggregated system requires efficient one-sided RDMA
operations. Figure 1c shows the throughputs of different

schemes with respect to EMT-D when configuring various

read/write ratios. FG and Sherman show significant advan-

tages over EMT-D, since all index operations are completed

via one-sided RDMA. The performance of XStore-D signif-

icantly deceases when configuring large write ratios, due to

failing to handle writes via one-sided RDMA operations.

3 ROLEX Design
3.1 Overview
We present a scalable RDMA-oriented key-value store using
learned indexes (ROLEX) for the disaggregated memory sys-

tems. Unlike existing schemes, ROLEX does not maintain a

B-tree on the memory nodes to process data requests. Instead,

ROLEX constructs the retraining-decoupled learned indexes

on the stored data and processes data requests on compute

nodes via the one-sided RDMA operations. The challenges

are how to efficiently avoid the collisions of various index

operations in different compute nodes, as well as enabling all

compute nodes to correctly identify the modified data with

low consistency overheads. Our main insights are to execute

index operations with atomic designs, and asynchronously

retrain models by decoupling the insertion and retraining

Me
mo
ry

 P
oo
l

Co
mp
ut

e
Po
ol

RDMA

Data
Leaf Region

CPU

Learned index

Leaf Upper model PLR modelMetadata

Insert model pointer

Head

Ptr
1

Ptr
2

CirQ:

Learned cacheLearned cache Learned cacheLearned cache Learned cacheLearned cache Learned cacheLearned cache

Figure 2: The design overview of ROLEX.

operations with consistency guarantees.

Figure 2 shows the overview of ROLEX. In the memory

pool, ROLEX stores all data into fixed-size leaves (i.e., arrays)

and constructs a retraining-decoupled learned index based on

these data, as shown in Sections 3.2 and 3.3. To process

dynamic workloads, the compute nodes directly modify the

remote leaves without retraining models, since we decouple

the insertion and retraining operations. By adding a bias and

some data-movement constraints, the non-retrained models

have the ability to correctly identify all data even after in-

serting new data. To construct sufficient data leaves for the

new data with one-sided RDMA, we present a leaf-atomic
shift scheme in Section 3.4, which also keeps all data sorted

for range queries and avoids the collisions among different

compute nodes. The stale models need to be retrained for high

accuracy when a large amount of data are modified. Although

the compute nodes have sufficient computing resources for

retaining, obtaining all the pending retraining data from mem-

ory nodes consumes much network bandwidth. Instead, we

observe that the retraining overheads mainly come from data

merging and resorting, while the complexity of the training

algorithm is only O(N). Hence, the limited computing re-

sources on memory nodes are sufficient to retrain the models,

especially after we have offloaded most index operations to

the compute nodes and moved the retraining phase out of

the critical path. With the aid of leaf tables, ROLEX asyn-
chronously retrains models in-place on the memory nodes,

as shown in Section 3.5. After retraining, ROLEX updates

the models in the memory pool using the shadow redirec-
tion scheme, while the compute nodes won’t synchronize the

retrained models until the next reading.

3.2 Retraining-decoupled Learned Indexes
The challenges of coalescing the learned indexes on dynamic

workloads come from the high overheads of keeping all data

sorted and avoiding data loss from the learned models during

insertion. The reason of data loss is that the models record

the positions of the trained data after training, while failing to

find the new positions after inserting many new data unless

retraining. As shown in Figure 3, the red line represents a

linear regression model that is trained on the black points (i.e.,

the trained data). All data are found in the prediction range,

102 21st USENIX Conference on File and Storage Technologies USENIX Association

[pred − ε, pred + ε] (i.e., the blue block), as long as the data

are not moved out of this range, where ε is the predefined

maximum model error. When some new data are inserted,

point a moves backward to a′, which is out of the prediction

range. To record the new positions, the models are retrained

via step-by-step operations, including resorting data, retrain-

ing models, and synchronizing models to all compute nodes.

The system is blocked until the retraining and synchronization

are completed, thus incurring a long latency and decreasing

the overall system performance.

In fact, we observe that the learned indexes don’t require

frequent retraining as long as the non-retrained models can

find all data. This observation offers an opportunity to address

the dilemma in coalescing the learned indexes in the disag-

gregated memory systems, i.e., new data are written to the

memory pool without waiting for retraining. To achieve this

design goal, we modify the training algorithm and add some

constraints to help the non-retrained models always find all

data without retraining.

Training Algorithm. Leveraging multiple linear regression

models is a common way to learn the data distribution due to

the efficiency of training and memory savings [10, 14, 15, 24].

We use an improved OptimalPLR algorithm to train the piece-

wise linear regression (PLR) models, since OptimalPLR al-

gorithm [46] has been proved to have the minimal number

of PLR models while incurring small time and space com-

plexity (O(N)). The key idea of OptimalPLR is to construct

multiple optimal parallelograms with 2ε width on the trained

data, where the optimal parallelogram is defined as a paral-

lelogram of 2ε width in the vertical direction such that no

trained data are placed outside of the parallelogram, as the

blue blocks shown in Figure 3. We thus obtain the linear

regression model that intersects the two vertical sides and

bisects the parallelogram.

ε >= max| f (Xi)−Yi| ∀i ∈ (0,N)

Prange = [f (Xi)− ε−δ, f (Xi)+ ε+δ]
(1)

To ensure that the trained models find all data even after

insertions, we improve the OptimalPLR algorithm by adding

a bias (represented as δ) to the prediction calculation, as well

as adding some constraints on the data movements. As shown

in Equation 1, the optimal parallelogram is determined by

guaranteeing that the distances between the predicted (f (Xi))
and true (Yi) positions of all data are not larger than the prede-

fined maximum model error (ε), while the prediction range

(Prange) is calculated by adding an extra δ. Hence, the area

covered by the prediction ranges of all data is larger than the

determined optimal parallelogram, i.e., we extend the blue

block to the yellow one, as shown in Figure 3. In this case,

the models don’t require retraining as long as the data move

no more than δ positions, since the δ data movements won’t

exceed the prediction range.

Data-movement constraints. Simply adding a bias to the

prediction calculation is insufficient to achieve the design

key

po
si
ti

on

CDF

CDF

f(x)

one leaf

model: f(x)

b

b’
data movement

a
a’

Figure 3: The retraining-decoupled learned indexes.

goal of operation decoupling, since the data move more than

δ positions when inserting/deleting a large amount of data. To

further address these issues, we add some constraints on the

data movements.

• Moving data within fixed-size leaves. We store the data

into fixed-size arrays (termed as leaves) in the training phase,

and each leaf contains at most δ data. All data are only allowed

to be moved within their assigned leaves. In this case, we

identify all data via existing trained models since no data

move out of Prange calculated from Equation 1. Furthermore,

we transfer the position prediction to the leaf prediction, i.e.,

the learned models provide a range of leaves that may contain

the queried data via Equation 2. Due to not moving out of the

assigned leaves, no data are lost. In the disaggregated memory

systems, the leaves in Lrange are easily obtained via one-sided

RDMA verbs.

Lrange = [
f (Xi)− ε

δ
,

f (Xi)+ ε
δ

] ∀i ∈ (0,N) (2)

• Synonym-leaf sharing. We allocate a new leaf (nl) to

accommodate more data when a leaf (l) has insufficient slots,

where nl shares the same positions (i.e., the labels used for

training) with l. We define nl as a synonym leaf of l, which is

linked via a pointer. The data of synonym leaves move within

each other to facilitate data sorting. Since nl doesn’t change

the positions recorded by models, the learned indexes still

calculate Lrange via Equation 2. Moreover, we need to search

the synonym leaves referred by Lrange, since the data may

locate in the predicted and synonym leaves.

The non-retrained models have the ability to find all data

without retraining, since no data move out of the predicted

leaves. We hence decouple the insertion and retraining opera-

tions for the learned indexes.

3.3 ROLEX Structure

To exploit the hardware benefits of the disaggregated memory

systems, ROLEX stores data on the memory nodes while pro-

cessing requests on the compute nodes, as shown in Figure 2.

Memory pool stores data. Driven by the operation de-

coupling, we store all data into fixed-size leaves and train

a learned index on these data using our improved training

algorithm. All leaves are stored in a continuous area (termed

as leaf region) allocated from an RDMA-registered memory

region. The structure of the leaf region is shown in Figure 2,

USENIX Association 21st USENIX Conference on File and Storage Technologies 103

LT

Learned model 1 bit
lock ptr

7 bit 8 bit 48 bit
LRN LN

Example:

SLT

ptr:3 LN:0
LT SLTentry (8B)

entry (8B)

ptr:0 LN:1
ptr:6 LN:2
ptr:0 LN:4
ptr:0 LN:5

slotuse
...

ptr:0 LN:6

Upper models

PLR models

Leaf region ...
ptr:0 LN:8

0
1
2
3
4

0

6

key w b

parameter

3

Figure 4: The structure of the learned models.

where the first two 8B data are respectively used to indicate

the number of leaves that have been allocated (alloc_num)

and the total number that the leaf region can allocate. The re-

maining leaf region stores a large number of leaves, and each

leaf contains δ pairs of keys and values2. To allocate a new

leaf, we read alloc_num and write it back with (alloc_num+1)

via the atomic FAA. We store data into the leaf pointed by the

obtained alloc_num. The leaves are accessed via adding off-

sets to the start position of the leaf region. Moreover, the

fragmentation and garbage collection can be efficiently miti-

gated in ROLEX, since ROLEX allocates and reclaims space

via fixed-size leaves that are accessed via the atomic-size leaf

numbers.

We train multiple PLR models on the stored leaves and each

model consists of four parts, including the covered smallest

key, the model parameters, a leaf table (LT) and a synonym

leaf table (SLT), as shown in Figure 4. LT and SLT store the

leaf numbers (i.e., the alloc_num when being allocated) to

access leaves. It is worth noting that different models indepen-

dently record the data positions for training, which become

easy to be updated since no position dependency exists among

models. The obtained PLR models are indexed by training

upper models on the smallest keys, where the upper mod-

els don’t contain leaf tables. We repeat this procedure and

construct multi-level models like PGM-index [14] due to the

small space consumption, which are fully cached in the com-

pute nodes. Moreover, we store the models with pointers,

which efficiently support our shadow redirection scheme to

update models, as shown in Section 3.5.

Compute pool caches indexes. The memory pool is shared

across compute nodes, which supports the system scalabil-

ity. Specifically, the newly added compute nodes identify the

shared memory pool via the RNIC, which obtain the start-

ing addresses of the model and leaf regions. After reading

the learned models from the model region, the new compute

nodes efficiently access the remote data according to the pre-

diction range of the learned models, where the entry in the

prediction range contains the leaf region number and the leaf

number, thus indicating the locations of the required data in

the memory pool. ROLEX processes various data requests

(e.g., search, update, insert, and delete) on compute nodes

with one-sided RDMA operations.

2Similar to prior RDMA-based schemes [31, 43, 44], ROLEX stores 8B

values or 8B pointers for variable-length values.

3.4 One-sided Index Operations

Simply executing data modification operations on compute

nodes incurs two challenges, i.e., long latency of multiple

remote operations and inconsistency issues among different

machines. For example, on dynamic workloads, conflicts oc-

cur when different compute nodes write data at the same

address in the memory pool, and inconsistencies occur when

one node constructs new leaves while not notifying others.

The 8B-atomic RDMA verbs fail to guarantee the data consis-

tency among different machines, since the moved data during

insertion are larger than 8B. An intuitive solution is to modify

data leaves and LTs with locks, as well as broadcasting other

nodes to synchronize their indexes after modifications. How-

ever, other nodes could not access or insert data due to the

consistence requirement from the locks until the modification

completes, which blocks the systems for a long time.

To address these problems, we propose a leaf-atomic shift
scheme that provides consistence guarantees for concurrently

modifying data via compute nodes while requiring few remote

RDMA operations. The key insights are to atomically assign

the write regions in the shared memory pool for different

compute nodes, and enable each compute node to access data

via the stale index structure. Specifically, we first show the

structures of LT and SLT that are designed for the leaf-atomic

shift scheme, and then respectively elaborate how different

index operations coalesce with this scheme.

The structures of LT and SLT. We leverage the 8B

alloc_num in the leaf region to enable the lock-free leaf allo-

cations via FAA, as well as using 8B entries in LT to enable

the consistent leaf modifications. The structures of LT and

SLT are shown in Figure 4. The first slot in SLT is preserved

to indicate how many slots (slotuse) of SLT have been used,

which is modified when constructing new synonym leaves.

Other slots of LT and SLT store 8B entries, each of which con-

sists of a lock (1 bit), a leaf-region number (7 bits), a pointer

(8 bits) and a leaf number (48 bits). The lock is lightweight

and fine-grained due to only locking the current leaf rather

than all leaves under the model. We use the leaf-region and

leaf numbers to determine the leaves, while the pointer points

to an offset of SLT to link the synonym leaf. For example, as

shown in Figure 4, the pointer of leaf 0 points to 3, indicating

that leaf 0 has a synonym leaf stored in the 3rd position of

SLT, while this synonym leaf is stored in the 6th position in

the leaf region. The size of LT is determined in the training

phase, while the size of SLT is fixed to contain 28 slots. In

our design, each leaf region registers up to 248 leaves, while

a model is able to construct up to (28-1) synonym leaves.

It is worth noting that the max number of each field can be

adjusted by specifying the bits in the entry of LT.

Point query. For a given key, the compute node searches

remote data via the following steps: � Predict Lrange with the

local learned indexes according to Equation 2. � Translate

the leaf positions into physical addresses by looking up LT

104 21st USENIX Conference on File and Storage Technologies USENIX Association

Network

Compute Node

Memory Node

Write(k, v) Learned Cache

Leaf Region alloc_num Linsert syn

WRITE

Learned Index
LT SLT

FAA

Lrange

synonym leaf

FAA

Figure 5: The worst-case insertion of ROLEX.

and SLT. As shown in Figure 4, we lookup the 1st-3rd entries

in LT when Lrange predicts [1,3], and further read the syn-

onym leaf number in the 6th slot of SLT when the 2nd entry

points to 6. The physical address (phy_addr) of a remote

leaf is calculated via Equation 3, i.e., multiply the leaf num-

ber (lnum) by the leaf size (lsize) and plus the address of the

first leaf in the leaf region (LRaddr). � Read leaves with door-

bell batching according to the physical addresses. � Search

the fetched leaves, and further read the value according to

the value pointer. ROLEX leverages the checksum-based

schemes like existing KV stores [12, 44, 45] to guarantee the

consistency of the read leaves.

The LT and SLT change when constructing new leaves in

the memory pool, which is identified by the compute nodes

when the first slot (i.e., slotuse) of SLT changes in the doorbell-

batch reading. The compute nodes synchronize remote LT

and SLT, and read the new leaves for data consistency.

phy_addr = lnum ∗ lsize +LRaddr (3)

Range query. A range query for [K,N] requires N items

starting from K. Apart from the leaves in Lrange, ROLEX

reads another (N/δ) adjacent leaves to ensure that at least N
items after K are fetched. Like point query, ROLEX reads all

required leaves via a doorbell batching.

Insert. ROLEX executes the insertion operation on com-

pute nodes via the following phases:

� Fetching. The compute node (represented as Cnode)

fetches the remote leaves like point query, without reading

synonym leaves in this phase, since the latest synonym leaves

will be fetched after acquiring the lock.

� Fine-grained locking. Cnode determines the leaf to be

inserted (represented as Linsert) according to the data order,

and locks Linsert by changing the lock bit of LT entry to 1 with

CAS. After locking, Cnode reads Linsert and its synonym leaves

to ensure that the data are up to date. The synonym leaves

share the same lock with the trained leaf to enable the atomic

lock. Even if Linsert and its synonym leaves are modified by

other compute nodes before being locked by Cnode, inserting

data into these leaves still keeps all data sorted, since the

data of Linsert are only allowed to move within Linsert and its

synonym leaves.

� Writing and unlocking. Cnode inserts data into the fetched

leaves according to the data order and unlock Linsert via CAS.

When the fetched leaves have insufficient empty slots,

Cnode constructs a new synonym leaf as shown in Figure 5.

Within one doorbell batching, Cnode fetches and increases

alloc_num of the leaf region and slotuse of SLT by 1 via

FAA. Furthermore, Cnode writes the new synonym leaf in the

memory pool according to the physical address calculated

by Equation 3, and inserts the alloc_num of the newly con-

structed synonym leaf into SLT at position slotuse. Cnode also

changes the pointer field of Linsert to the new leaf and unlocks

Linsert via CAS.

For optimizations, other threads of Cnode can leverage the

acquired lock to modify the same leaves, and the operations

of writing leaves and modifying leaf tables are completed in

one doorbell batching to improve the performance.

Update. Cnode fetches the remote leaves like point query.

When the given key is matched in one of the fetched leaves,

Cnode locks and re-reads the corresponding leaf to ensure

that the data are up to date. The compute node updates the

key-value item and unlocks the remote leaf.

Delete. To delete the data K, Cnode � fetches and � locks

the remote leaves like insertion operations, e.g., Cnode fetches

the leaf L1 and its synonym leaves L5−8. When K is identified

in one of the fetched leaves, e.g., L6, Cnode removes K in L6,

while other leaves are not modified. When L6 becomes empty

after deleting K, Cnode removes L6 by modifying the leaf table,

i.e., linking L5 to L7. �Cnode writes L6 to memory nodes

and unlocks the leaves. Moreover, the empty trained leaf L1

is not removed until next retaining to avoid the prediction

error, as shown in Section 3.5. Other compute nodes identify

the deleted leaf when observing that the data in the synonym

leaves are not sorted, which further synchronize the leaf tables

and read the remote data.

3.5 Asynchronous Retraining

The retraining overheads come from the data resorting and

retraining algorithms [37, 46]. An intuitive solution is to con-

duct retraining on compute nodes, which however consumes

a large amount of available network bandwidth for transfer-

ring the pending retraining data. Instead, we observe that

all data have been sorted by the leaf tables (i.e., LTs and

SLTs) during the runtime, and the OptimalPLR algorithm

has a low complexity (i.e., O(N)) [46] to train data, where N
represents the number of the training data. Hence, ROLEX

asynchronously retrains data in-place on the memory nodes to

achieve an efficient trade-off between the network consump-

tion and computing resource utilization. After offloading most

index operations to the compute nodes, our experimental re-

sults show that the limited computing resources (e.g., one

CPU core) on memory nodes are enough for retraining, as

shown in Section 4.5.

ROLEX maintains a circular queue (CirQ) to identify the

pending retraining models, and concurrently retrains models

USENIX Association 21st USENIX Conference on File and Storage Technologies 105

using the shadow redirection scheme without blocking the

systems. Specifically, the compute nodes insert the pointer of

a model at the end of CirQ when the model consumes 27 slots

of SLT. The memory nodes periodically check the head of

CirQ for retraining, which retrains models in the background

and constructs a new LT to merge the old LT and SLT, while

the compute nodes concurrently access the old models. Both

new and old models access the same data via their own leaf

tables. After retraining, the memory nodes replace the models

with consistency guarantees.

Consistency guarantee. Figure 6 shows the consistency

guarantee when the memory nodes concurrently retrain the

leaves L1−5, where L5 is a synonym leaf of L3. During retrain-

ing, the compute nodes concurrently modify the data, which

lead to inconcistency when the positions of the data are not

retrained by the new model, e.g., 1) constructing a new syn-

onym leaf L8 of L5 and 2) moving data within the synonym

leaves. ROLEX ensures the data consistency by redirecting

the non-retrained data into a new SLT for the new model.

1) ROLEX identifies the newly constructed leaf (e.g., L8)

by checking the leaf tables of both old and new models, where

the entry appearing in old LT or SLT but not appearing in the

new LT is identified as a non-retrained leaf. When replac-

ing the old model with the new one after retraining, ROLEX

locks the old model and inserts L8 to the new SLT, as well as

changing the model pointer to the new model before unlock-

ing, as shown in Figure 6. Hence, the new model correctly

identifies L8 by accessing the new leaf tables, and the com-

pute nodes correctly identify the new model by checking the

model pointer. Similarly, the removed leaves are identified by

checking both old and new leaf tables.

2) ROLEX identifies the new positions of the moved data

by checking the previous trained leaf. As shown in Figure 6,

before the retraining begins, we respectively represent the

leftmost and rightmost data in each leaf as Xl and Xr, e.g., X3l
represents the leftmost data of L3. During retraining, the old

model inserts the new item 15 in L3, and inserts the items

18 and 24 into the newly constructed synonym leaf L9. The

challenge is to ensure that the new model correctly identifies

the data modified by the old model, including the trained data

in the leaves (e.g., the data between X3l and X3r) and the new

data between two sorted leaves (e.g., the data between X3r and

X5l). According to Equation 2, the new model predicts the data

between X3l and X3r in L3 due to recording these data in L3

when the retraining begins. The new model correctly identifies

these modified data in the synonym leaves by checking the

new SLT. However, the inconsistent state occurs for the data

between X3r and X5l (e.g., 24), since the new model may

predict these data in L5 but overlook L3 and L9. To avoid such

error, ROLEX checks the previous leaf (i.e., L3) to correctly

identify the modified data.

ROLEX doesn’t need to resort or move any data for retrain-

ing, since all data have been sorted by the leaf tables during

the runtime. No data are lost during retraining, since all leaves

alloc_num L3 L5 ···

RetrainingLT SLT

Old model

L8

LT SLT

New model

5 7 18 25 29 40 48 5210L3 L5 L8

18 24L9

36 57

X3l X8r

···

X5r X8l

15

Figure 6: The consistency guarantee of concurrent retraining.

are either retrained by the new model or being inserted into

the new SLT.

ROLEX inserts the new data in the synonym leaves, which

triggers retraining when the synonym leaves consume half of

(i.e., 27) the slots in the SLT. Before the retraining completes,

SLT still contains the space to create 27 more synonym leaves

to insert new keys. After retraining, the new models include

new SLTs to accommodate more data. In our experiments,

each leaf contains 16 slots and the model totally inserts 2,048

data before being retrained, while a model covers on aver-

age 1,465 trained data. Hence, a retraining is triggered when

inserting about 1× new data than the trained data, having a

low retraining frequency. The speed of retraining models is

much faster than that of filling all synonym leaves. Moreover,

ROLEX has a priority queue to identify and train the model

with almost full SLT to avoid the scenario where a model has

insufficient slots in SLT.

3.6 System Discussions

Scalability. ROLEX distributes large datasets across multiple

memory nodes by constructing multiple leaf regions. Specifi-

cally, 27 leaf regions form a group and each region contains at

most 248 leaves to store data. A leaf group hence contains 255

leaves and is sufficient to construct a large number of learned

models. By training data in the same group, the learned mod-

els become efficient to determine the location of a leaf via the

leaf-region (7 bits) and leaf numbers (48 bits) of the entry in

LT and SLT. Moreover, ROLEX constructs multiple groups

to scale across multiple memory nodes and becomes efficient

to accommodate a large amount of data.

Durability and fault tolerance. Existing disaggregated

memory systems enable the durability and fault tolerance in

different ways, such as the persistent memory [39,50], battery-

backup system [12], and logging writes [44], while achieving

efficient performance. All these solutions are orthogonal to

ROLEX for efficient durability and fault tolerance.

Emerging heterogeneous technology. ROLEX bene-

fits from the technology integrating emerging accelerators

and specialized hardware into the disaggregated memory

nodes [17], due to the sufficient computing resources. More-

over, the powerful network technology [32] incurs low net-

work penalty on remote data accessing. In this case, ROLEX

needs a fallback mechanism to avoid the lock contention

among many compute nodes, which is our future work.

106 21st USENIX Conference on File and Storage Technologies USENIX Association

4 Performance Evaluation

4.1 Experimental Setup

We run all experiments on a cluster with 3 compute nodes

and 3 memory nodes, and each server node is equipped with

two 26-core Intel(R) Xeon(R) Gold 6320R CPUs @2.10Ghz,

188GB DRAM, and one 100Gb Mellanox ConnectX-5 IB

RNIC. The RNIC in each machine is connected with a

100Gbps IB switch. We limit the computing resources utiliza-

tion (i.e., 1 CPU core in our testbed) for the memory node,

which is reasonable due to the fact of the limited comput-

ing capability in the typical memory pools [17, 43]. During

the initialization, the memory pool registers memory with

huge pages to avoid the penalty of the page translation cache

misses. The registered memory consists of the model and leaf

regions to respectively maintain the learned models and data.

Existing RNIC hardware doesn’t support remote memory al-

location [53], and we hence pre-allocate memory for the leaf

region to support our proposed atomic-leaf shift scheme. All

compute nodes run with 24 threads by default.

Workloads: We use YCSB [47] with both uniform and Zip-

fian request distributions to evaluate the performance, which

contains 6 default workloads, including (A) update heavy

(50% updates), (B) read mostly (95% read), (C) read only,

(D) read latest (5% insert), (E) short ranges (95% range re-

quest), and (F) read-modify-write (50% modifications). Apart

from these workloads, we also evaluate the performance un-

der write-intensive requests with 2 real-world, and 2 synthetic

datasets [24]. Among them, Weblogs and DocID respectively

contains 200 and 16 million key-value pairs with different

data distributions. The two synthetic datasets contain 100 mil-

lion items, and respectively meet the normal and lognormal

data distributions. We configure all workloads with 8B keys

and pointers (i.e., refer to variable-length values) like existing

schemes [24, 44] for comprehensive evaluations.

Counterparts for Comparisons: We compare ROLEX

with four state-of-the-art distributed KV stores. Specifically,

FG [52] and Sherman [43] design RDMA-enabled B-link

trees for the disaggregated memory systems. We directly run

the source codes of Sherman. Since FG is not open-source,

we implement FG from scratch faithfully following the origi-

nal design principles, as well as caching the top-level nodes

on compute nodes for better performance. We also adopt the

similar ideas of EMT-D [23] and XStore-D [44] on the disag-

gregated systems, i.e., using the limited computing resources

of memory nodes to show the performance of RPC-based

schemes. EMT-D transfers all requests to memory nodes via

eRPC (RDMA-based RPC), while XStore-D accesses read-

only workloads via compute nodes and relies on memory

nodes to process write-intensive requests. We configure our

implemented ROLEX with 16 slots in each leaf, as well as

setting 16 as the maximum model error to train PLR models

for efficient system performance. We further leverage 1 CPU

core on the memory node and disable the garbage collection

Uniform

Zipfian

Figure 7: The throughputs on various YCSB workloads.

and durability functions for all counterparts to facilitate fair

comparisons.

4.2 Overall Performance in YCSB

Figure 7 shows the throughputs on various YCSB work-

loads with both Uniform and Zipfian distributions. In general,

ROLEX achieves competitive performance with XStore-D

on static workloads, while achieving higher throughput on

dynamic workloads due to not relying on remote CPUs.

Static workload (YCSB C). On the static workloads,

XStore-D and ROLEX efficiently read remote data via one

RDMA READ according to the prediction results of the learned

models, which achieve higher performance than FG and Sher-

man due to fewer RTTs caused by the local cache. EMT-D

achieves the lowest throughput, since the memory nodes have

insufficient computing resources to process the data requests.

ROLEX achieves higher performance than XStore-D due to

the high model accuracy. Specifically, ROLEX leverages the

OptimalPLR algorithm [46] to train models according to the

data distributions, which guarantees that all model errors are

smaller than the predefined threshold. However, XStore-D

leverages the recurve model index scheme [24] for training

and fails to adaptively train models according to the data dis-

tribution. Some model errors are large when failing to train

sufficient models, causing a large prediction range and lower

performance than ROLEX in the read-only workloads.

Read-write workloads (YCSB A, B, D, F). For data modi-

fications, both XStore-D and EMT-D transfer data requests to

the remote side and achieve low throughput, due to the limited

CPU cores on memory nodes. The performance of FG and

Sherman is limited by the local cache due to the large mem-

ory footprint of inner nodes. ROLEX achieves higher perfor-

mance than other schemes due to exploiting the learned local

cache with the efficient one-sided RDMA WRITE. Specifically,

ROLEX outperforms FG, Sherman, EMT-D, and XStore-D

by up to 2.1×, 1.7×, 2.8×, and 1.3× on workload A, since

ROLEX directly updates the remote data without involving

remote CPUs. For workload D, 5% insertions are mixed with

95% searches, and ROLEX improves the throughput by about

USENIX Association 21st USENIX Conference on File and Storage Technologies 107

(a) Write-only throughput. (b) Write-only latency. (c) Hybrid read/write throughput. (d) Hybrid read/write latency.

Figure 8: The performance with various read/write scenarios.

(a) Read throughput. (b) Write throughput.

Figure 9: The performance under various data distributions.

(a) Read throughput. (b) Write throughput.

Figure 10: Scalability with various CPUs on compute nodes.

1.5× over other schemes. The reason is that the caches of

other schemes become invalid during insertion, while ROLEX

leverages the stale cache to write data in synonym leaves. We

obtain the similar observations on workloads B and F.

Range-query workload (YCSB E). Workload E contains

95% range query and 5% insert requests. We observe that

ROLEX improves the performance by 67% over other

schemes, since all data are kept sorted in the synonym leaves

during insertion and the range queried data are fetched in a

doorbell batching by RDMA READ.

4.3 Performance in Various Scenarios

Apart from YCSB, we have the similar observations on other

representive workloads, including Weblogs, DocID, Normal,

and Lognormal. Figure 8 shows the performance of different

schemes in various scenarios.

Throughput with intensive writes. Figure 8a shows the

throughput of inserting different numbers of data. As we con-

stantly insert data, ROLEX achieves significant performance

improvements over other schemes. Specifically, ROLEX im-

proves the insert throughput by up to 2.1×, 1.8×, 4.5×, and

4.3× over FG, Sherman, EMT-D, and XStore-D. The main

reason is that the local cache is fully exploited by ROLEX

with one-sided RDMA operations, while the footprints of

inner nodes in tree-based schemes overflow the cache and

the remote CPUs limit the write performance of RPC-based

schemes. Moreover, we evaluate the latencies of the insert

operations for different schemes, and the results are shown in

Figure 8b. We observe that ROLEX incurs low latency since

the stale cache identifies the leaf to be inserted according to

the prediction results of the learned models. For the mono-

tonically increasing keys, ROLEX shows low performance

when multiple compute nodes contend for the same leaf lock,

which is alleviated by sharing the leaf lock among multiple

threads of the same compute node.

Performance with hybrid read-writes. Figures 8c and 8d

respectively show the throughput and latency under various

read/write ratios. The performance of EMT-D doesn’t de-

crease much with the increasing write ratios, since the remote

memory nodes suffer from the bottleneck of insufficient com-

puting resources and achieve low performance even under

intensive read requests. XStore-D achieves high performance

on read-heavy workloads, while significantly decreasing the

performance as the write ratio increases, because XStore-D

reads data with one-sided RDMA while transferring most data

requests to the remote side as the number of write requests

increases. ROLEX, FG, and Sherman achieve higher perfor-

mance than other schemes due to not being limited by the

remote CPUs. ROLEX improves the throughput by 2.2× and

1.7× over FG and Sherman, since the improvements mainly

come from the efficient learned local cache. FG and Sherman

have to spend multiple RTTs on retrieving the remote data

when the inner nodes overflow the limited local cache.

The latency of ROLEX is lower than that of RPC-based

schemes in the disaggregated memory systems, since the

latency of accessing remote data comes from the network

roundtrip and the index structure traversal. ROLEX traverses

the cached learned indexes via the compute nodes, while RPC-

based systems traverse the index structures via the memory

nodes. In the disaggregated memory systems, the compute

nodes have sufficient computing resources to support high

concurrent access, while however the memory nodes have

limited computing resources and fail to meet the requirements

for processing intensive index requests.

Performance with various data distributions. The data dis-

tributions impact the model accuracy of the learned indexes,

which decrease the performance when the learned models

deliver low accuracy. Figure 9 shows the throughput on var-

ious workloads with different data distributions, including

108 21st USENIX Conference on File and Storage Technologies USENIX Association

(a) Read with synonym leaves. (b) Write different sized leaves. (c) Write multiple leaves.

PLR model

(d) The latency of training leaves.

Figure 11: In-depth Analysis. We evaluate the latency and network bandwidth consumption when reading/writing/training
different numbers of synonym leaves.

Weblogs, DocID, Normal, and Lognormal. We observe that

ROLEX achieves higher read performance than XStore-D.

The main reason is that the improved OptimalPLR algorithm

trains independent linear regression models with high accu-

racy according to the data distributions.

4.4 Scalability Performance
Figure 10 shows the throughput of various schemes with dif-

ferent numbers of cores on the compute nodes. We observe

that the performance of EMT-D doesn’t increase when config-

uring more cores on compute nodes, since the bottleneck of

EMT-D are the remote CPUs of memory nodes, rather than

the compute nodes. The throughputs of other schemes in-

crease with the number of cores on compute nodes, as shown

in Figure 10a, because FG, Sherman, XStore-D, and ROLEX

don’t rely on the remote CPUs to process the read requests.

However, the write performance of XStore-D fails to scale

out with the number of cores on compute nodes, as shown

in Figure 10b, since XStore-D quickly runs out the available

computing resources of the memory nodes. The read and

write performance of ROLEX increases with the increasing

number of cores on compute nodes, since different threads

don’t block each other.

If the disaggregated memory system is not assumed, in our

evaluation, EMT-D and XStore-D achieve higher performance

than other designs when configuring the memory nodes with

more than 20 CPU cores, since 20 CPU cores in memory

nodes meet the requirements of processing various index op-

erations. However, it is worth noting that our paper mainly

focuses on the disaggregated memory systems, which gener-

ally configure limited computing resources (i.e., much lower

than 20 CPU cores) on the memory nodes.

4.5 In-Depth Analysis
We conduct three optimizations in ROLEX, including op-

eration decoupling, one-sided indexing, and asynchronous

retraining, which efficiently support the system to obtain high

performance. We evaluate the efficiency of different optimiza-

tions in Figure 11.

Operation decoupling. An important insight of ROLEX

is that we decouple the insertion and retaining operations to

enable the compute nodes to directly insert data to the memory

pool, which leverages the stale models to identify the new data.

As shown in Figures 11(a-d), although retraining incurs long

latency, ROLEX achieves low latency to read and write remote

data, since the operation decoupling moves the retraining

phase out of the critical path and enables the compute nodes

to insert data without waiting for the retraining.

One-sided indexing. The compute nodes access remote

data via one-sided indexing, which incurs low latency and

bandwidth consumption when operating on a small range of

data, since one-sided indexing efficiently exploits the bene-

fits of RDMA doorbell batching. We observe that ROLEX

achieves high performance when respectively setting ε and δ
to [8, 256] and [8, 128], which achieve an efficient tradeoff

between the accessing efficiency and the retraining frequency.

Specifically, ε and δ respectively represent the maximum

prediction error and the leaf size. As shown in Figures 11a

and 11c, a large ε provides a large prediction range, which

consumes much network bandwidth and latency to identify

the requested data. ROLEX achieves high performance when

reading/writing 8-256 data, where the number of data is cal-

culated by multiplying the size and the number of the leaves.

Moreover, the small δ provides small-size leaves, which fre-

quently triggers retraining since the leaves have insufficient

slots to accommodate new data. However, as shown in Fig-

ure 11b, too large δ consumes much network bandwidth for

modifying remote data, since ROLEX reads/writes data in the

granularity of a leaf.

Asynchronous retraining. ROLEX asynchronously re-

trains the models to construct new models and leaf tables,

which increases the model accuracy to read and write few

leaves. As shown in Figure 11, the operations upon a small

number of leaves significantly reduce the latency and network

bandwidth consumption. Figure 11d shows the retraining

latency using a single CPU core. We observe that training

models and constructing leaf tables on 128 leaves consume

about 300μs. Unlike conventional learned indexes [10,14,37],

ROLEX doesn’t need to move or resort any data during retrain-

ing, since all data are kept sorted during data modifications.

4.6 Overhead Analysis

Figure 12 shows the memory footprints of the metadata in

different schemes, where the metadata refer to the data that

USENIX Association 21st USENIX Conference on File and Storage Technologies 109

(a) Different numbers of data. (b) Different datasets.

Figure 12: The memory footprints of the metadata. Tree-#
represents that an inner node contains # keys.

are required for caching. For example, the metadata consist of

the inner nodes for the tree-based schemes, while consisting

of trained models and leaf tables for XStore-D and ROLEX.

We observe that the memory overheads in tree-based struc-

tures rapidly increase with the increasing data, because many

levels of inner nodes are constructed for indexing. Moreover,

the metadata overheads significantly increase when using

small inner nodes due to requiring more levels. Unlike tree-

based structures, XStore-D and ROLEX leverage the linear

regression models for indexing, and each model only contains

2 parameters and is much smaller than the inner nodes. As

shown in Table 1, the memory overhead of ROLEX mainly

comes from the LTs, which accounts for 98% of the total

memory consumption. These models can be fully cached by

the compute nodes, while the LTs can be fetched as needed

when the limited cache fails to maintain all LTs.

In general, the compute overhead comes from the training

algorithm with O(N) complexity, where N represents the num-

ber of trained data. On average, ROLEX spends 0.28μs on

training one data to obtain the trained models and store the

data in the leaves.

5 Related Work

The disaggregated memory systems. The promising disaggre-

gated memory systems [27, 33, 34, 38, 42, 52] break a mono-

lithic server into independent components to enhance the

hardware scalability, which achieves high resources utiliza-

tion by scaling out different hardware components [16, 49].

Different components communicate with each other via effi-

cient RDMA techniques [4,5,19,36]. Existing academic stud-

ies attempt to bring the disaggregated memory systems into

practice via hardware designs [27,28]. Recently, Clio [17] pro-

poses a hardware-software co-designed disaggregated mem-

ory system to equip each memory node with dedicated com-

puting resources. LegoOS [34] proposes an OS model to man-

age disaggregated systems. Remote regions [1], LITE [40],

and Semeru [42] are used to efficiently manage the remote

memory resources. AIFM [32] designs a simple API for ap-

plications to use the remote memory. With the widely used

NVM [29, 35, 48], Clover [39] remotely manages the persis-

tent memory with low costs. FORD [50] enables the disag-

gregated memory systems to efficiently support transactions.

Table 1: The metadata analysis for ROLEX.

Number of Data 5∗106 1∗107 5∗107 1∗108 5∗108

Number of Models 5,153 10,283 51,111 101,936 526,236

Size of Models (MB) 0.0798 0.157 0.779 1.555 8.03

Size of LT (MB) 4.768 9.537 47.683 95.367 476.837

Learned indexes for storage systems. The learned in-
dexes [24] leverage calculations to predict positions for the

given keys. Prior designs focus on various scenarios to enable

the learned indexes to be widely used, including dynamically

adapting to new data distributions [10, 14, 15], concurrent

systems [37], LSM-based [9], and network-attached [44] KV

stores. Motivated by the learned indexes, some studies lever-

age machine learning models to construct learned systems,

e.g., DeepDB [18], Tsunami [11], and LISA [26].

Network-attached key-value stores. Due to the salient fea-

tures of RDMA [4,33,36,49], constructing RDMA-enabled in-

memory key-value stores [23,31,44,52] becomes efficient for

distributed storage systems. Existing studies rely on two-sided

RDMA verbs to process the data requests [6,21,23]. However,

such server-centralized designs suffer from the CPU bottle-

neck when processing intensive requests [22, 44, 45] due to

the poor computing capability of memory nodes. Unlike them,

one-side RDMA enables compute nodes to directly access the

remote data without involving remote CPUs [13, 39, 53]. For

the ordered KV stores, Cell [31], FG [52], and Sherman [43]

cache top-level nodes to reduce the number of RTTs based

on B-link trees [25]. XStore [44] proposes a learned cache

to further reduce the network penalty, which incurs one RTT

to access the remote data. Unlike them, we design ROLEX

for the disaggregated memory systems to efficiently process

various requests via one-sided RDMA operations.

6 Conclusion
This paper proposes ROLEX, a scalable RDMA-oriented or-

dered key-value store using learned indexes for the disaggre-

gated memory systems. ROLEX decouples the insertion and

retraining operations, which enables the compute nodes to

directly modify the remote data without retraining models.

Other compute nodes identify the newly modified data via

the stale models with consistency guarantees. ROLEX asyn-

chronously retrains modes to improve the model accuracy.

Our evaluation results demonstrate that ROLEX achieves

high performance on both static and dynamic workloads in

the context of the disaggregated memory systems. We have

released the open-source codes for public use in GitHub.

Acknowledgments
This work was supported in part by National Natural Science

Foundation of China (NSFC) under Grant No. 62125202 and

U22B2022. We are grateful to our shepherd, Rong Chen, and

anonymous reviewers for their comments and suggestions.

110 21st USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier

Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun

Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-

ran Tati, Rajesh Venkatasubramanian, and Michael Wei.

Remote regions: a simple abstraction for remote mem-

ory. In 2018 USENIX Annual Technical Conference
(ATC), pages 775–787, 2018.

[2] Amazon. Amazon elastic block store. https://aws.
amazon.com/ebs/?nc1=h_ls, 2021.

[3] Amazon. Amazon s3. https://aws.amazon.com/
s3/, 2021.

[4] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim

Kraska, and Erfan Zamanian. The end of slow networks:

It’s time for a redesign. Proc. VLDB Endow., 9(7):528–

539, 2016.

[5] Amanda Carbonari and Ivan Beschasnikh. Tolerating

faults in disaggregated datacenters. In Proceedings of
the 16th ACM Workshop on Hot Topics in Networks
(HotNets), pages 164–170, 2017.

[6] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable

rdma rpc on reliable connection with efficient resource

sharing. In Proceedings of the Fourteenth EuroSys Con-
ference 2019 (EuroSys), pages 19:1–19:14, 2019.

[7] Douglas Comer. The ubiquitous b-tree. ACM Comput.
Surv., 11(2):121–137, 1979.

[8] Intel Corporation. Intel rack scale design ar-

chitecture. https://www.intel.com/content/
www/us/en/architecture-and-technology/
rack-scale-design-overview.html, 2021.

[9] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan

Alagappan, Brian Kroth, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. From wisckey to bour-

bon: A learned index for log-structured merge trees. In

14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 155–171, 2020.

[10] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang,

Jaeyoung Do, Yinan Li, Hantian Zhang, Badrish Chan-

dramouli, Johannes Gehrke, Donald Kossmann, David B.

Lomet, and Tim Kraska. Alex: An updatable adaptive

learned index. In Proceedings of the 2020 International
Conference on Management of Data (SIGMOD), pages

969–984, 2020.

[11] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and

Tim Kraska. Tsunami: A learned multi-dimensional

index for correlated data and skewed workloads. Proc.
VLDB Endow., 14(2):74–86, 2020.

[12] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel

Castro, and Orion Hodson. Farm: Fast remote mem-

ory. In Proceedings of the 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
pages 401–414, 2014.

[13] Aleksandar Dragojevic, Dushyanth Narayanan, Ed-

mund B. Nightingale, Matthew Renzelmann, Alex

Shamis, Anirudh Badam, and Miguel Castro. No

compromises: distributed transactions with consistency,

availability, and performance. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP),
pages 54–70, 2015.

[14] Paolo Ferragina and Giorgio Vinciguerra. The pgm-

index: a fully-dynamic compressed learned index with

provable worst-case bounds. Proc. VLDB Endow.,
13(8):1162–1175, 2020.

[15] Alex Galakatos, Michael Markovitch, Carsten Binnig,

Rodrigo Fonseca, and Tim Kraska. Fiting-tree: A data-

aware index structure. In Proceedings of the 2019 In-
ternational Conference on Management of Data (SIG-
MOD), pages 1189–1206, 2019.

[16] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar,

Joao Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-

nasamy, and Scott Shenker. Network requirements for

resource disaggregation. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 249–264, 2016.

[17] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang,

and Yiying Zhang. Clio: A hardware-software co-

designed disaggregated memory system. In 27th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), 2022.

[18] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa,

Alejandro Molina, Kristian Kersting, and Carsten Binnig.

Deepdb: Learn from data, not from queries! Proc. VLDB
Endow., 13(7):992–1005, 2020.

[19] HP. The machine. https://www.hpl.hp.com/
research/systems-research/themachine/, 2021.

[20] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and

Beomseok Nam. Endurable transient inconsistency in

byte-addressable persistent b+-tree. In 16th USENIX
Conference on File and Storage Technologies (FAST),
pages 187–200, 2018.

[21] Anuj Kalia, Michael Kaminsky, and David G. Andersen.

Using rdma efficiently for key-value services. In ACM
SIGCOMM 2014 Conference (SIGCOMM), pages 295–

306, 2014.

USENIX Association 21st USENIX Conference on File and Storage Technologies 111

[22] Anuj Kalia, Michael Kaminsky, and David G. Andersen.

Fasst: Fast, scalable and simple distributed transactions

with two-sided (rdma) datagram rpcs. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 185–201, 2016.

[23] Anuj Kalia, Michael Kaminsky, and David G. Andersen.

Datacenter rpcs can be general and fast. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2019, Boston, MA, February 26-28,
2019, pages 1–16, 2019.

[24] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and

Neoklis Polyzotis. The case for learned index structures.

In Proceedings of the 2018 International Conference on
Management of Data (SIGMOD), pages 489–504, 2018.

[25] Philip L. Lehman and S. Bing Yao. Efficient locking for

concurrent operations on b-trees. ACM Trans. Database
Syst., 6(4):650–670, 1981.

[26] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang

Pan. Lisa: A learned index structure for spatial data.

In Proceedings of the 2020 International Conference
on Management of Data (SIGMOD), pages 2119–2133,

2020.

[27] Kevin T. Lim, Jichuan Chang, Trevor N. Mudge,

Parthasarathy Ranganathan, Steven K. Reinhardt, and

Thomas F. Wenisch. Disaggregated memory for expan-

sion and sharing in blade servers. In 36th International
Symposium on Computer Architecture (ISCA), pages

267–278, 2009.

[28] Kevin T. Lim, Yoshio Turner, Jose Renato Santos, Alvin

AuYoung, Jichuan Chang, Parthasarathy Ranganathan,

and Thomas F. Wenisch. System-level implications of

disaggregated memory. In 18th IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 189–200, 2012.

[29] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-

pus: an rdma-enabled distributed persistent memory file

system. In 2017 USENIX Annual Technical Conference
(ATC), pages 773–785, 2017.

[30] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.

Cache craftiness for fast multicore key-value storage. In

European Conference on Computer Systems, Proceed-
ings of the Seventh EuroSys Conference 2012 (EuroSys),
pages 183–196, 2012.

[31] Christopher Mitchell, Kate Montgomery, Lamont Nel-

son, Siddhartha Sen, and Jinyang Li. Balancing cpu

and network in the cell distributed b-tree store. In 2016
USENIX Annual Technical Conference (ATC), pages

451–464, 2016.

[32] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguil-

era, and Adam Belay. Aifm: High-performance,

application-integrated far memory. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 315–332, 2020.

[33] Abdallah Salama, Carsten Binnig, Tim Kraska, Ansgar

Scherp, and Tobias Ziegler. Rethinking distributed query

execution on high-speed networks. IEEE Data Eng.
Bull., 40(1):27–37, 2017.

[34] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying

Zhang. Legoos: A disseminated, distributed os for hard-

ware resource disaggregation. In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pages 69–87, 2018.

[35] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Dis-

tributed shared persistent memory. In Proceedings of the
2017 Symposium on Cloud Computing (SoCC), pages

323–337, 2017.

[36] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani,

Paolo Costa, Ki-Suh Lee, Han Wang, Rachit Agarwal,

and Hakim Weatherspoon. Shoal: A network architec-

ture for disaggregated racks. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 255–270, 2019.

[37] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen

Hu, Zhaoguo Wang, Minjie Wang, and Haibo Chen. Xin-

dex: a scalable learned index for multicore data storage.

In 25th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 308–

320, 2020.

[38] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E.

Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-

Balter, and John Wilkes. Borg: the next generation. In

15th EuroSys Conference 2020 (EuroSys), pages 30:1–

30:14, 2020.

[39] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-

aggregating persistent memory and controlling them

remotely: An exploration of passive disaggregated key-

value stores. In 2020 USENIX Annual Technical Con-
ference (ATC), pages 33–48, 2020.

[40] Shin-Yeh Tsai and Yiying Zhang. Lite kernel rdma

support for datacenter applications. In Proceedings of
the 26th Symposium on Operating Systems Principles
(SOSP), pages 306–324, 2017.

[41] Jérôme Vienne, Jitong Chen, Md. Wasi-ur-Rahman,

Nusrat S. Islam, Hari Subramoni, and Dhabaleswar K.

Panda. Performance analysis and evaluation of infini-

band fdr and 40gige roce on hpc and cloud computing

112 21st USENIX Conference on File and Storage Technologies USENIX Association

systems. In IEEE 20th Annual Symposium on High-
Performance Interconnects (HOTI), pages 48–55, 2012.

[42] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan

Ruan, Khanh Nguyen, Michael D. Bond, Ravi Ne-

travali, Miryung Kim, and Guoqing Harry Xu. Semeru:

A memory-disaggregated managed runtime. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 261–280, 2020.

[43] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A

write-optimized distributed b+ tree index on disaggre-

gated memory. In Proceedings of the 2022 International
Conference on Management of Data (SIGMOD), 2022.

[44] Xingda Wei, Rong Chen, and Haibo Chen. Fast rdma-

based ordered key-value store using remote learned

cache. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 117–

135, 2020.

[45] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and

Haibo Chen. Fast in-memory transaction processing

using rdma and htm. In Proceedings of the 25th Sym-
posium on Operating Systems Principles (SOSP), pages

87–104, 2015.

[46] Qing Xie, Chaoyi Pang, Xiaofang Zhou, Xiangliang

Zhang, and Ke Deng. Maximum error-bounded piece-

wise linear representation for online stream approxima-

tion. VLDB J., 23(6):915–937, 2014.

[47] Yahoo. Yahoo! cloud serving benchmark (ycsb). https:
//github.com/brianfrankcooper/YCSB, 2019.

[48] Jian Yang, Joseph Izraelevitz, and Steven Swanson.

Orion: A distributed file system for non-volatile main

memory and rdma-capable networks. In 17th USENIX
Conference on File and Storage Technologies (FAST),
pages 221–234, 2019.

[49] Erfan Zamanian, Carsten Binnig, Tim Kraska, and Tim

Harris. The end of a myth: Distributed transaction can

scale. Proc. VLDB Endow., 10(6):685–696, 2017.

[50] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu.

Ford: Fast one-sided rdma-based distributed transactions

for disaggregated persistent memory. In 20th USENIX
Conference on File and Storage Technologies (FAST 22),
pages 51–68, 2022.

[51] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong

Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-

hye, Shachar Raindel, Mohamad Haj Yahia, and Ming

Zhang. Congestion control for large-scale rdma deploy-

ments. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication (SIG-
COMM), pages 523–536, 2015.

[52] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Bin-

nig, Rodrigo Fonseca, and Tim Kraska. Designing

distributed tree-based index structures for fast rdma-

capable networks. In Proceedings of the 2019 Interna-
tional Conference on Management of Data (SIGMOD),
pages 741–758, 2019.

[53] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang,

and Yu Hua. One-sided rdma-conscious extendible hash-

ing for disaggregated memory. In 2021 USENIX Annual
Technical Conference (ATC), pages 15–29, 2021.

USENIX Association 21st USENIX Conference on File and Storage Technologies 113

